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Abstract

The central premise of the Black and Scholes [Black, F., Scholes, M. (1973). The
pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659]
and Merton [Merton, R. (1973). Theory of rational option pricing. Bell Journal of
Economics and Management Science 4, 141–184] option pricing theory is that there
exists a self-financing dynamic trading policy of the stock and risk free accounts that
renders the market dynamically complete. This requires that the market be complete
and perfect. In this essay, we are concerned with cases in which dynamic trading breaks
down either because the market is incomplete or because it is imperfect due to the
presence of trading costs, or both. Market incompleteness renders the risk-neutral
probability measure non unique and allows us to determine the option price only
within a range. Recognition of trading costs requires a refinement in the definition
and usage of the concept of a risk-neutral probability measure. Under these market
conditions, a replicating dynamic trading policy does not exist. Nevertheless, we are
able to impose restrictions on the pricing kernel and derive testable restrictions on the
prices of options. We illustrate the theory in a series of market setups, beginning with
the single period model, the two-period model and, finally, the general multiperiod
model, with or without transaction costs. We also review related empirical results that
document widespread violations of these restrictions.
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1 Introduction

The Nobel-winning ingenious idea behind the classic option pricing model
of Black and Scholes (1973) and Merton (1973), hereafter BSM, is that, in
the absence of arbitrage, the price of an option equals the cost of setting up a
judiciously managed portfolio with payoff that replicates the option payoff.

The central premise of the BSM theory is that there exists a self-financing
dynamic trading policy of the stock and risk free accounts that renders the mar-
ket dynamically complete. This requires that the market be complete and perfect.
Two assumptions of the BSM model make the market complete. First, the
price of the underlying security has continuous sample paths at the exclusion of
jumps. Second, the stock return volatility is constant. These assumptions essen-
tially imply that the price of the underlying security is a geometric Brownian
motion. Finally, the assumption of the BSM model that renders the market
perfect is that trading is frictionless. In the BSM model, the volume of trading
over any finite time interval is infinite. The transaction costs associated with
the replicating dynamic trading policy would be infinite for any given positive
proportional transactions cost rate.

Formally, absence of arbitrage in a frictionless market implies the existence
of a risk-neutral probability measure, not necessarily unique, such that the price
of any asset equals the expectation of its payoff under the risk-neutral measure,
discounted at the risk free rate. Furthermore, if the market is complete then
the risk-neutral measure is unique and the option price is unique as well. In the
BSM model, the price of the underlying security follows a geometric Brownian
motion which renders the market complete and the option price unique as well.

The risk-neutral probability measure is the real probability measure with
the expected rate of return on the underlying security replaced by the risk free
rate. The real probability distribution of stock returns can be estimated from
the time series of past returns. The risk-neutral probability distribution of stock
returns can be estimated from the cross section of option prices. As discussed
in detail in the empirical Section 10, this prediction of the BSM theory does not
fare well and provides the motivation to reexamine the premises of the theory.

In this essay, we are concerned with cases in which dynamic trading breaks
down either because the market is incomplete or because there are trading
costs or both. Market incompleteness renders the risk-neutral probability mea-
sure non unique and allows us to determine the option price only within a
range. Recognition of trading costs requires a refinement in the definition and
usage of the concept of a risk-neutral probability measure.

In Section 2, we discuss the implications of the absence of arbitrage. We
introduce the concept of the risk-neutral probability and the closely related
concept of the state price density or pricing kernel. We apply the theory to price
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options under the assumption of the absence of arbitrage in complete and in-
complete markets. In Section 3, we lay out the general framework for pricing
options in a market that is incomplete and also imperfect due to trading costs.
Under these market conditions, a replicating dynamic trading policy does not
exist. Nevertheless, we are able to impose further restrictions on the pricing
kernel and provide testable restrictions on the prices of options. In Sections 4–
9, we illustrate the theory in a series of market setups, beginning with the single
period model, the two-period model and finally the general multiperiod model,
with or without transaction costs. In Section 10, we review related empirical re-
sults and, in Section 11, conclude.

2 Implications of the absence of arbitrage

2.1 General theory

Absence of arbitrage in a frictionless market implies the existence of a risk-
neutral probability measure, not necessarily unique, such that the price of any
asset equals the expectation of its payoff under the risk-neutral measure, dis-
counted at the risk free rate. If a risk-neutral measure exists, the ratio of the
risk-neutral probability density and the real probability density, discounted at
the risk free rate, is referred to as the pricing kernel or stochastic discount factor
(SDF). Thus, absence of arbitrage implies the existence of a strictly positive
SDF. These ideas are implicit in the option pricing theory of Black and Scholes
(1973) and Merton (1973) and are further developed by Ross (1976), Cox and
Ross (1976), Constantinides (1978), Harrison and Kreps (1979), Harrison and
Pliska (1981), and Delbaen and Schachermayer (1994).

To fix ideas, let there be J securities. Security j, j = 1� � � � � J, has price Pj at
the beginning of the period and payoff Xij in state i, i = 1� � � � � I, at the end
of the period. An investor purchases θj securities of type j, j = 1� � � � � J, with
the objective to minimize the purchase cost, subject to the constraint that the
portfolio payoff is strictly positive in all states of nature. The investor solves
the following LP problem:

(2.1)inf{θj}

J∑
j=1

θjPj

subject to

(2.2)
J∑

j=1

θjXij > 0� ∀i�

If the minimum purchase cost is negative, then there is an arbitrage opportu-
nity.
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Absence of arbitrage implies that the above problem, with the added condi-
tion

(2.3)
J∑

j=1

θjPj < 0

is infeasible. Then the dual of this LP problem is feasible. This implies the
existence of strictly positive state prices, {πi}i=1�����I , such that:

(2.4)Pj =
I∑

i=1

πiXij� ∀j

and

(2.5)πi > 0� ∀i�
If the number of states does not exceed the number of securities with linearly
independent payoffs, the market is said to be complete and the state prices
are unique. Otherwise, the market is incomplete and the state prices are not
unique.

The normalized state prices qi ≡ πi/
∑I

k=1 πk can be thought of as proba-
bilities because they are strictly positive and add up to one. The inverse of the
sum of the state prices, R ≡ 1/

∑I
k=1 πk, has the interpretation as one plus the

risk free rate. Then we may write Eq. (2.4) as

(2.6)Pj = R−1
I∑

i=1

qiXij = R−1EQ[Xj]� ∀j

with the interpretation that the price of security j is its expected payoff under
the probability measure Q = {qi}, discounted at the risk free rate. For this
reason, the probability measure Q is referred to as a risk-neutral or risk-adjusted
probability measure. Thus, absence of arbitrage implies the existence of a risk-
neutral probability measure. This property of the absence of arbitrage is far
more general than this simple illustration implies.

Let P = {pi} denote the real probability measure of the states. The ratio
mi ≡ πi/pi is referred to as the state price density or stochastic discount factor
or pricing kernel or intertemporal marginal rate of substitution. In terms of the
pricing kernel, we may write Eq. (2.4) as

(2.7)Pj =
I∑

i=1

pimiXij = EP [miXj]� ∀j

where the expectation is with respect to the real probability measure P .
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2.2 Application to the pricing of options

Let the stock market index have price S0 at the beginning of the period;
ex dividend price Si with probability pi in state i, i = 1� � � � � I, at the end of
the period; and cum dividend price (1 + δ)Si at the end of the period. The
jth derivative, j = 1� � � � � J, has price Pj at the beginning period, and its cash
payoff Xij is Gj(Si), a given function of the terminal stock price, at the end of
the period in state i. In this context, absence of arbitrage implies the existence
of a strictly positive pricing kernel m : mi, i = 1� � � � � I, such that:

(2.8)1 = R

I∑
i=1

pimi�

(2.9)S0 =
I∑

i=1

pimi(1 + δ)Si

and

(2.10)Pj =
I∑

i=1

pimiGj(Si)� j = 1� � � � � J�

Non-existence of a strictly positive pricing kernel implies arbitrage such as vio-
lations of the Merton (1973) no-arbitrage restrictions on the prices of options.

In practice, it is always possible to estimate the real probability measure P
from time series data on past index returns. A derivatives pricing model is then a
theory that associates the appropriate pricing kernel m : mi > 0, i = 1� � � � � I,
with the estimated probability measure P .

In the absence of arbitrage, a unique pricing kernel may be derived in terms
of the prices of J securities with linearly independent payoffs, if the market is
complete, J � I. Then any derivative is uniquely priced in terms of the prices
of I securities. This is the essence of derivatives pricing when the market is
complete. An example of a complete market is the binomial model, described
next.

In a single-period binomial model, there are just two states and the pricing
kernel is derived in terms of the prices of the risk free asset and the stock or
index on which options are written. Then any derivative is uniquely priced in
terms of the risk free rate and the stock or index price. The natural extension
of the single period binomial model is the widely used multiperiod binomial
model developed by Cox and Ross (1976), Cox et al. (1979), and Rendleman
and Bartter (1979). The stock price evolves on a multi-stage binomial tree over
the life of the option so that the stock price assumes a wide range of values.
Yet the market is complete because in each subperiod there are only two states.
An option can be hedged or replicated on the binomial tree by adjusting the
amounts held in the stock and the risk free asset at each stage of the binomial
process. This type of trading is called dynamic trading and renders the market
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dynamically complete. These fundamental ideas underlie the original option
pricing model of Black and Scholes (1973) and Merton (1973). The binomial
model is often used as a pedagogical tool to illustrate these ideas as in the text-
book treatments by Hull (2006) and McDonald (2005). The binomial model is
also a powerful tool in its own right in numerically pricing American and exotic
options.

In this essay, we are concerned with cases in which dynamic trading or hedg-
ing breaks down either because the market is incomplete or because there are
trading costs or both. In these cases, we impose further restrictions on the
pricing kernel by taking into account the economic environment in which the
derivatives are traded.

3 Additional restrictions implied by utility maximization

3.1 Multiperiod investment behavior with proportional transaction costs

We consider a market with heterogeneous agents and investigate the re-
strictions on option prices imposed by a particular class of utility-maximizing
traders that we simply refer to as traders. We do not make the restrictive as-
sumption that all agents belong to the class of the utility-maximizing traders.
Thus our results are unaffected by the presence of agents with beliefs, endow-
ments, preferences, trading restrictions, and transaction cost schedules that
differ from those of the utility-maximizing traders.

As in Constantinides (1979), trading occurs at a finite number of trading
dates, t = 0� 1� � � � � T� � � � � T ′.1 The utility-maximizing traders are allowed to
hold only two primary securities in the market, a bond and a stock. The stock
has the natural interpretation as the market index. Derivatives are introduced
in the next section. The bond is risk free and pays constant interest R− 1 each
period. The traders may buy and sell the bond without incurring transaction
costs. At date t, the cum dividend stock price is (1 + δt)St , the cash dividend
is δtSt , and the ex dividend stock price is St , where δt is the dividend yield. We
assume that the rate of return on the stock, (1+δt+1)St+1/St , is identically and
independently distributed over time.

The assumption of i.i.d. returns is not innocuous and, in particular, rules
out state variables such as stochastic volatility, stochastic risk aversion, and
stochastic conditional mean of the growth rate in dividends and consumption.
In this essay, we deliberately rule out such state variables in order to explore
the extent to which market incompleteness and market imperfections (trading
costs) alone explain the prices of index options. We discuss models with such
state variables in Section 10.

1 The calendar length of the trading horizon is N years and the calendar length between trading dates
is N/T ′ years. Later on we vary T ′ and consider the mispricing of options under different assumptions
regarding the calendar length between trading dates.
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Stock trades incur proportional transaction costs charged to the bond ac-
count as follows. At each date t, the trader pays (1 + k)St out of the bond
account to purchase one ex dividend share of stock and is credited (1 − k)St
in the bond account to sell (or, sell short) one ex dividend share of stock. We
assume that the transactions cost rate satisfies the restriction 0 � k < 1. Note
that there is no presumption that all agents in the economy face the same
schedule of transaction costs as the traders do.

A trader enters the market at date t with dollar holdings xt in the bond ac-
count and yt/St ex dividend shares of stock. The endowments are stated net
of any dividend payable on the stock at time t.2 The trader increases (or, de-
creases) the dollar holdings in the stock account from yt to y ′

t = yt + υt by
decreasing (or, increasing) the bond account from xt to x′

t = xt − υt − k|υt |.
The decision variable υt is constrained to be measurable with respect to the
information at date t. The bond account dynamics are

(3.1)xt+1 = {
xt − υt − k|υt |

}
R + (yt + υt)

δtSt+1

St
� t � T ′ − 1

and the stock account dynamics are

(3.2)yt+1 = (yt + υt)
St+1

St
� t � T ′ − 1�

At the terminal date, the stock account is liquidated, υT ′ = −yT ′ , and the
net worth is xT ′ + yT ′ − k|yT ′ |. At each date t, the trader chooses investment
υt to maximize the expected utility of net worth, E[u(xT ′ + yT ′ − k|yT ′ |)|St].3
We make the plausible assumption that the utility function, u(·), is increasing
and concave, and is defined for both positive and negative terminal net worth.4
Note that even this weak assumption of monotonicity and concavity of prefer-
ences is not imposed on all agents in the economy but only on the subset of
agents that we refer to as traders.

We recursively define the value function V (t) ≡ V (xt� yt� t) as

V (xt� yt� t) = max
υ

E

[
V

({
xt − υ − k|υ|}R

2 We elaborate on the precise sequence of events. The trader enters the market at date t with dollar
holdings xt − δtyt in the bond account and yt/St cum dividend shares of stock. Then the stock pays
cash dividend δtyt and the dollar holdings in the bond account become xt . Thus, the trader has dollar
holdings xt in the bond account and yt/St ex dividend shares of stock.
3 The results extend routinely to the case that consumption occurs at each trading date and utility is
defined over consumption at each of the trading dates and over the net worth at the terminal date.
See Constantinides (1979) for details. The model with utility defined over terminal net worth alone is a
more realistic representation of the objective function of financial institutions.
4 If utility is defined only for non-negative net worth, then the decision variable is constrained to be
a member of a convex set that ensures the non-negativity of net worth. See Constantinides (1979) for
details. However, the derivation of bounds on the prices of derivatives requires an entirely different
approach and yields weaker bounds. This problem is studied in Constantinides and Zariphopoulou
(1999, 2001).



572 G.M. Constantinides, J.C. Jackwerth and S. Perrakis

(3.3)+ (yt + υ)
δtSt+1

St
� (yt + υ)

St+1

St
� t + 1

) ∣∣∣ St
]

for t � T ′ − 1, and

(3.4)V (xT ′� yT ′� T ′) = u
(
xT ′ + yT ′ − k|yT ′ |)�

We assume that the parameters satisfy appropriate technical conditions such
that the value function exists and is once differentiable.

Equations (3.1)–(3.4) define a dynamic program that can be numerically
solved for given utility function and stock return distribution. We shall not solve
this dynamic program because our goal is to derive restrictions on the prices
of options that are independent of the specific functional form of the utility
function but solely depend on the plausible assumption that the traders’ utility
function is monotone increasing and concave in the terminal wealth.

The value function is increasing and concave in (xt� yt), properties that it
inherits from the assumed monotonicity and concavity of the utility function,
as shown in Constantinides (1979):

(3.5)Vx(t) > 0� Vy(t) > 0� t = 0� � � � � T� � � � � T ′

and

V
(
αxt + (1 − α)x′

t � αyt + (1 − α)y ′
t � t

)
� αV (xt� yt� t) + (1 − α)V (x′

t � y
′
t � t)�

(3.6)0 < α < 1� t = 0� � � � � T� � � � � T ′�
On each date, the trader may transfer funds between the bond and stock

accounts and incur transaction costs. Therefore, the marginal rate of substitu-
tion between the bond and stock accounts differs from unity by, at most, the
transaction costs rate:

(3.7)(1 − k)Vx(t) � Vy(t) � (1 + k)Vx(t)� t = 0� � � � � T� � � � � T ′�
Marginal analysis on the bond holdings leads to the following condition on the
marginal rate of substitution between the bond holdings at dates t and t + 1:

(3.8)Vx(t) = REt
[
Vx(t + 1)

]
� t = 0� � � � � T� � � � � T ′ − 1�

Finally, marginal analysis on the stock holdings leads to the following condition
on the marginal rate of substitution between the stock holdings at date t and
the bond and stock holdings at date t + 1:

Vy(t) = Et

[
St+1

St
Vy(t + 1) + δtSt+1

St
Vx(t + 1)

]
�

(3.9)t = 0� � � � � T� � � � � T ′ − 1�

Below we employ these restrictions on the value function to derive restrictions
on the prices of options.
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3.2 Application to the pricing of options

We consider J European-style derivatives on the index, with random cash
payoff Gj(ST ), j = 1� 2� � � � � J, at their common expiration date T , T � T ′. At
time zero, the trader can buy the jth derivative at price Pj + kj and sell it at
price Pj − kj , net of transaction costs. Thus 2kj is the bid–ask spread plus the
round-trip transaction costs that the trader incurs in trading the jth derivative.
Note that there is no presumption that all agents in the economy face the same
bid–ask spreads and transaction costs as the traders do.

We assume that the traders are marginal in all J derivatives. Furthermore,
we assume that, if a trader holds a finite (positive or negative) number of deriv-
atives, these positions are sufficiently small relative to her holdings in the bond
and stock that the monotonicity and concavity conditions (3.5) and (3.6) on the
value function remain valid.5

Marginal analysis leads to the following restrictions on the prices of options:

(Pj − kj)Vx(0) � E0
[
Gj(ST )Vx(T)

]
� (Pj + kj)Vx(0)�

(3.10)j = 1� 2� � � � � J�

Similar restrictions apply to the prices of options at dates t = 1� � � � � T − 1.
Below, we illustrate the implementation of the restrictions on the prices of

options in a number of important special cases. First, we consider the case
T = 1 which rules out trading between the bond and stock accounts over the
lifetime of the options. We refer to this case as the single-period case. Note that
the single-period case does not rule out trading over the trader’s horizon after
the options expire; it just rules out trading over the lifetime of the options. We
discuss the single-period case both with and without transaction costs.

A useful way to identify the options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option, say the Jth option,
and solve the problem

(3.11)min
{Vx(t)�Vy(t)}t=0�����T

E0

[
GJ(ST )

Vx(T)

Vx(0)

]
�

subject to conditions (3.5)–(3.10), where in Eq. (3.10) the subscript j runs from
1 to J − 1. If this problem is feasible, then the attained minimum has the fol-
lowing interpretation. If one can buy the test option for less than the minimum
attained in this problem, then at least one investor, but not necessarily all in-
vestors, increases her expected utility by trading the test option.

Likewise, we may solve the problem

(3.12)max
{Vx(t)�Vy(t)}t=0�����T

E0

[
GJ(ST )

Vx(T)

Vx(0)

]
�

5 Conditions (3.7)–(3.9) remain valid even if the holdings of the derivatives are not small.
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subject to conditions (3.5)–(3.10), where in Eq. (3.10) the subscript j runs
from 1 to J − 1. If this problem is feasible, then the attained maximum has
the following interpretation. If one can write the test option for more than the
maximum attained in this problem, then at least one investor, but not necessar-
ily all investors, increases her expected utility by trading the test option.

As the number of trading dates T increases, the computational burden
rapidly increases. One way to reduce computational complexity is to limit at-
tention to the case J = 1 (one option) and convex payoff (as, for example,
the payoff of a call or put option). In this special case, we present closed-form
solutions with and without transaction costs and, in many cases, present lim-
iting forms of the option prices, as the number of intermediate trading dates
becomes infinitely large.

4 Special case: one period without transaction costs

4.1 Results for general payoffs

The stock market index has price S0 at the beginning of the period; ex divi-
dend price Si with probability pi in state i, i = 1� � � � � I, at the end of the period;
cum dividend price (1 + δ)Si at the end of the period; and return (1 + δ)Si/S0.
We define by zi ≡ Si/S0 the ex dividend price ratio. We order the states such
that Si is increasing in i. The jth derivative, j = 1� � � � � J, has price Pj at the
beginning period and cash payoff Gj(zi) at the end of the period in state i. We
denote by V i(t) the value function at date t and state i.

Since the transaction costs rate is assumed to be zero, we have Vx(0) =
Vy(0) and V i

x(1) = V i
y (1). We identify the previously defined stochastic dis-

count factor or pricing kernel mi with the intertemporal marginal rate of sub-
stitution in state i�mi ≡ V i

x(1)/Vx(0). Conditions (3.8)–(3.10) become:

(4.1)1 = R

I∑
i=1

pimi�

(4.2)1 =
I∑

i=1

pimi(1 + δ)zi

and

(4.3)Pj =
I∑

i=1

pimiGj(zi)� j = 1� � � � � J�

The concavity relation (3.6) of the value function implies additional restric-
tions on the pricing kernel. Historically, the expected premium of the return on
the stock over the bond is positive. Under the assumption of positive expected
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premium, the trader is long in the stock. Since the assumption in the single-
period model is that there is no trading between the bond and stock accounts
over the life of the option, the trader’s wealth at the end of the period is in-
creasing in the stock return. Note that this conclusion critically depends on the
assumption that there is no intermediate trading in the bond and stock. Since
we employed the convention that the stock return is increasing in the state i,
the trader’s wealth on date T is increasing in the state i. Then the concavity of
the value function implies that the marginal rate of substitution is decreasing
in the state i:

(4.4)m1 � m2 � · · · � mI > 0�
A pricing kernel satisfying restrictions (4.1)–(4.4) defines the intertempo-

ral marginal rate of substitution of a trader who maximizes her increasing and
concave utility and is marginal in the options, the index and the risk free rate.
If there does not exist a pricing kernel satisfying restrictions (4.1)–(4.4), then
any trader with increasing and concave utility can increase her expected utility
by trading in the options, the index, and the risk free rate – hence equilibrium
does not exist. These strategies are termed stochastically dominant for the pur-
poses of this essay, insofar as they would be adopted by all traders with utility
possessing the required properties, in the same way that all risk averse investors
would choose a dominant portfolio over a dominated one in conventional sec-
ond degree stochastic dominance comparisons. Thus, the existence of a pricing
kernel that satisfies restrictions (4.1)–(4.4) is said to rule out stochastic domi-
nance between the observed prices.

We emphasize that the restriction on option prices imposed by the criterion
of the absence of stochastic dominance is motivated by the economically plau-
sible assumption that there exists at least one agent in the economy with the
properties that we assign to a trader. This is a substantially weaker assumption
than requiring that all agents have the properties that we assign to traders. Sto-
chastic dominance then implies that at least one agent, but not necessarily all
agents, increases her expected utility by trading.6

As before, we single out a “test” option, say the Jth option, and derive
bounds that signify infeasibility if the price of the test option lies outside the
bounds. The general form of this problem was stated in expressions (3.11)
and (3.12). In the special case of no trading over the life of the option and
zero transactions costs, the bounds on the test option with payoff GJ(zi) in
state i are given by

(4.5)max{mi}

(
or�min{mi}

) I∑
i=1

pimiGJ(zi)�

6 We also emphasize that the restriction of the absence of stochastic dominance is weaker than the
restriction that the capital asset pricing model (CAPM) holds. The CAPM requires that the pricing
kernel be linearly decreasing in the index price. The absence of stochastic dominance merely imposes
that the pricing kernel be monotone decreasing in the index price.
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subject to conditions (4.1)–(4.4), where in Eq. (4.3) the subscript j runs from 1
to J − 1.

4.2 Results for convex payoffs

The feasibility of relations (4.1)–(4.4) can be expressed in closed form in
the special case where the options are puts and calls, with payoff Gj(zi) that
is a convex function of the end-of-period return (or stock price). Ryan (2000,
2003) provided inequalities that define an admissible range of prices for each
option by considering the prices of the two options with immediately adjacent
strike prices and Huang (2005) tightened these inequalities. In practice, this
means that (4.1)–(4.4) become infeasible in most realistic problems with a large
enough set of traded options.

Perrakis and Ryan (1984), Levy (1985), and Ritchken (1985) expressed the
upper and lower bounds in (4.5) in closed form in the special case J = 1 (one
option) where the option is a put or call, with payoff G1(zi) that is a convex
function of the end-of-period stock price. Consider a European call option
with strike price K, payoff G1(zi) = [S0zi(1 + δ)−K]+ ≡ ci and price P1 = c.
Define ẑ ≡ ∑I

i=1 pizi and assume (1+δ)ẑ � R. Equations (4.1)–(4.5) become

(4.6)max(or�min)
{mi}

I∑
i=1

pimici

subject to
I∑

i=1

pimi(1 + δ)zi = 1� and

(4.7)R

I∑
i=1

pimi = 1� m1 � · · · � mI > 0�

The solution to (4.6)–(4.7) crucially depends on the minimum value zmin ≡ z1.
If zmin > 0, the upper and lower bounds c0 and c0 on the call option price are
given by

c0 = 1
R

[
R − (1 + δ)zmin

(1 + δ)(ẑ − zmin)
ĉI + (1 + δ)ẑ − R

(1 + δ)(ẑ − zmin)
c1

]
�

(4.8)c0 = 1
R

[
R − (1 + δ)ẑh

(1 + δ)(ẑh+1 − ẑh)
ĉh+1 + (1 + δ)ẑh+1 − R

(1 + δ)(ẑh+1 − ẑh)
ĉh

]
�

In the above equations, h is a state index such that (1+δ)ẑh � R � (1+δ)ẑh+1
and we have used the following notation for conditional expectations for k =
1� � � � � I:

ĉk =
∑k

i=1 cipi∑k
i=1 pi

= E
[
cT | ST � S0(1 + δ)zk

]
�
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(4.9)ẑk =
∑k

i=1 zipi∑k
i=1 pi

= E
[
zT | zT � zk

]
�

Inspection of Eqs. (4.8) and (4.9) reveals that both the upper and lower bounds
of the call option are discounted expectations with two different distributions,
U = {ui} and L = {li}. These distributions are both risk neutral, since it can be
easily verified that R−1 ∑i=I

i=1 ui(1 + δ)zi = R−1 ∑i=I
i=1 li(1 + δ)zi = 1. These

distributions are:

u1 = R − (1 + δ)zmin

(1 + δ)(ẑ − zmin)
p1 + (1 + δ)ẑ − R

(1 + δ)(ẑ − zmin)
�

ui = R − (1 + δ)zmin

(1 + δ)(ẑ − zmin)
pi� i = 2� � � � � I�

li = (1 + δ)ẑh+1 − R

(1 + δ)(ẑh+1 − ẑh)

pi∑h
k=1 pk

+ R − (1 + δ)ẑh
(1 + δ)(ẑh+1 − ẑh)

pi∑h+1
k=1 pk

�

i = 1� � � � � h�

(4.10)lh+1 = R − (1 + δ)ẑh
(1 + δ)(ẑh+1 − ẑh)

ph+1∑h+1
k=1 pk

�

As the states increase, the distribution of z becomes continuous over the inter-
val [zmin�∞), with actual distribution P(z) and expectation E(z). Then, U and
L become

U(z) =
⎧⎨
⎩
P(z) with probability R−(1+δ)zmin

(1+δ)(E(z)−zmin)
�

1zmin with probability (1+δ)E(z)−R
(1+δ)(E(z)−zmin)

�

(4.11)L(z) = P
(
z | (1 + δ)E(z) � R

)
�

We note that the two call option bounds become two increasing and convex
functions c(S0) and c(S0) given by

c(S0) = 1
R
EU

[(
S0(1 + δ)z − K

)+]
�

(4.12)c(S0) = 1
R
EL

[(
S0(1 + δ)z − K

)+]
�

In the important special case zmin = 0, the upper bound in (4.12) becomes

(4.13)c(S0) = 1
(1 + δ)E[z]E

P
[(
S0(1 + δ)z − K

)+]
�

Similar results are available for put options. We have thus shown that un-
der the no intermediate trading assumption the option price is bound by two
values given as the expectation of discounted payoff under two limiting dis-
tributions. Oancea and Perrakis (2006) provided corresponding bounds when
(1 + δ)ẑ � R.
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5 Special case: one period with transaction costs and general payoffs

In a one-period model with transaction costs and general payoffs, conditions
(3.8)–(3.10) become

(5.1)Vx(0) = R

I∑
i=1

piV
i
x(1)�

(5.2)Vy(0) =
I∑

i=1

pi

[
Si
S0

V i
y (1) + δSi

S0
V i
x(1)

]

and

(Pj − kj)Vx(0) �
I∑

i=1

piGj(Si)V
i
x(1) � (Pj + kj)Vx(0)�

(5.3)j = 1� � � � � J�

Conditions (3.5)–(3.7) become7

(5.4)Vx(0) > 0� Vy(0) > 0� V i
x(1) > 0� V i

y (1) > 0� i = 1� � � � � I�

(5.5)V 1
y (1) � V 2

y (1) � · · · � V I
y (1) > 0

and

(5.6)(1 − k)V i
x(1) � V i

y (1) � (1 + k)V i
x(1)� i = 1� � � � � I�

As before, a useful way to pinpoint options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option and solve the prob-
lems (3.11) and (3.12) subject to restrictions (5.1)–(5.6).

In order to highlight the difference in the formulation brought about by
transaction costs, we adopt a notation similar to that in (4.1)–(4.5). We de-
fine mi ≡ V i

x(1)/Vx(0), the marginal rate of substitution between the bond
account at time one and the bond account at time zero and state i; and
λi ≡ V i

y (1)/Vx(0), the marginal rate of substitution between the stock account
at time one and the bond account at time zero and state i. Then (5.1)–(5.6)
become

(5.7)1 = R

I∑
i=1

pimi�

7 Since the value of the bond account at the end of the period is independent of the state i, the concavity
conditions Vxx(t) < 0 and Vxx(1)Vyy(1) − (Vxy(1))2 > 0 cannot be imposed. Only the concavity
condition Vyy(t) < 0 is imposed as in Eq. (5.5).
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(5.8)(1 − k) �
I∑

i=1

pizi(λi + δmi) � (1 + k)�

(5.9)(Pj − kj) �
I∑

i=1

pimiGj(zi) � (Pj + kj)� j = 1� � � � � J�

(5.10)λ1 � λ2 � · · · � λI > 0

and

(5.11)(1 − k)mi � λi � (1 + k)mi� i = 1� � � � � I�

The bounds on the nth option with payoff Gn(zi) in state i are given by

(5.12)max
mi�λi

(
or� min

mi�λi

) I∑
i=1

pimiGn(zi)�

Transaction costs double the number of variables that must be determined by
the solution of the program. Furthermore, transaction costs expand the feasi-
ble region of the pricing kernel for any given set of option prices. Indeed, it
is easy to see that for k = 0, kj = 0, j = 1� � � � � J the problem (5.7)–(5.12)
becomes identical to (4.1)–(4.5). Therefore, if a feasible solution to (4.1)–(4.4)
exists, then this solution is feasible for (5.7)–(5.11) with mi = λi, i = 1� � � � � I.
This implies that the spread between the two objective functions of (4.5) lies
within the spread of the objective functions of (5.12).

6 Special case: two periods without transaction costs and general payoffs

The single-period model without transaction costs implies that the wealth
at the end of the period is an increasing function of the stock price at the end
of the period and, therefore, the pricing kernel is a decreasing function of the
stock price at the end of the period. Likewise, the single period model with
transaction costs implies that the value of the stock account at the end of the
period is an increasing function of the stock price at the end of the period and,
therefore, the marginal utility of wealth out of the stock account is a decreasing
function of the stock price at the end of the period.

Constantinides and Zariphopoulou (1999) pointed out that intermediate
trading invalidates the above implications with or without transaction costs,
because the wealth at the end of the period (or, the value of the stock account
at the end of the period) becomes a function not only of the stock price at
the option’s expiration but also of the entire sample path of the stock price.8

8 In the special case of i.i.d. returns, power utility, and zero transaction costs, the wealth at the end of
the period is a function only of the stock price. However, this assumption would considerably diminish
the generality of the model.
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Constantinides and Perrakis (2002) recognized that it is possible to recursively
apply the single-period approach with or without transaction costs and derive
stochastic dominance bounds on option prices in a market with intermediate
trading over the life of the options.

In this section, we study a two-period model without transaction costs and,
in the next section, a two-period model with transaction costs. In the absence of
transaction costs, the value function V (t) ≡ V (xt� yt� t) defined in (3.1)–(3.4)
becomes a function of the aggregate trader wealth, V (xt + yt� t). Therefore,
we have Vx(t) = Vy(t), t = 0� 1� 2. As before, we define the first period pricing
kernel as m1i ≡ V i

x(1)/Vx(0). For the second period, we define the pricing
kernel as m2ik ≡ V ik

y (2)/Vx(0), i� k = 1� � � � � I. Then conditions (3.5)–(3.11)
become

(6.1)1 = R

I∑
i=1

pim1i� 1 = R

I∑
k=1

pk
m2ik

m1i
� i = 1� � � � � I�

1 =
I∑

i=1

pim1i(1 + δ)zi� 1 =
I∑

k=1

pk
m2ik

m1i
(1 + δ)zk�

(6.2)i = 1� � � � � I�

(6.3)Pj =
I∑

i=1

I∑
k=1

pipkm2ikGj(zizk)� j = 1� � � � � J

and

m11 � m12 � · · · � m1I > 0� m2i1 � m2i2 � · · · � m2iI > 0�

(6.4)i = 1� � � � � I�

We test for feasibility by solving the program

(6.5)max
m1i�m2ik

(
or� min

m1i�m2ik

) I∑
i=1

I∑
k=1

pipkm2ikGn(z1iz2k)�

The extension of the program (6.1)–(6.5) to more than two periods becomes
potentially explosive. In Section 8, we present closed form expressions for the
bounds on the prices of European options in the special case where the payoff
Gj(ST ) is convex (call or put) and J = 1, by using the expressions developed
in Section 4.2.

7 Special case: two periods with transaction costs and general payoffs

We now allow for transaction costs in the two-period model with general
payoffs. Unlike Section 6, we have Vx(t) �= Vy(t), t = 0� 1� 2. We define
the first period marginal rates of substitution as m1i ≡ V i

x(1)/Vx(0) and
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λ1i ≡ V i
y (1)/Vx(0), i = 1� � � � � I. We define the two-period marginal rates of

substitution as m2ik ≡ V ik
x (2)/Vx(0) and λ2ik ≡ V ik

y (2)/Vx(0), i� k = 1� � � � � I.
Then conditions (3.5)–(3.11) become

(7.1)1 = R

I∑
i=1

pim1i� 1 = R

I∑
k=1

pk
m2ik

m1i
� i = 1� � � � � I�

(1 − k) �
I∑

i=1

piz1i(λ1i + δm1i) � (1 + k)�

(7.2)λ1i =
I∑

k=1

pkz2k(λ2ik + δm2ik)� i = 1� � � � � I�

(7.3)Pj − kj �
I∑

i=1

I∑
k=1

pipkm2ikGj(zizk) � Pj + kj� j = 1� � � � � J�

λ11 � λ12 � · · · � λ1I > 0� λ2i1 � λ2i2 � · · · � λ2iI > 0�

(7.4)i = 1� � � � � I

and

(1 − k)m1i � λ1i � (1 + k)m1i�

(7.5)
(1 − k)m2ik � λ2ik � (1 + k)m2ik� i = 1� � � � � I� k = 1� � � � � I�

As before, we test for feasibility by solving the program

(7.6)max
m1i�λ1i�m2ik�λ2ik

(
or� min

m1i�λ1i�m2ik�λ2ik

) I∑
i=1

I∑
k=1

pipkm2ikGn(z1iz2k)

subject to (7.1)–(7.5). Constantinides et al. (2007) tested for violations of the
stochastic dominance conditions (7.1)–(7.6).

In Section 9, we present closed form expressions for the bounds on the
prices of European options for T � 2 in the special case where the payoff
Gj(ST ) is convex (call or put) and J = 1, by using the expressions developed
in Section 4.2.

8 Multiple periods without transaction costs and with convex payoffs

For the case J = 1 and with convex payoffs, it is possible to use the special
structure of the closed-form solution (4.8)–(4.12), in order to decompose the
general problem into a series of one-period problems for any value of T . In-
deed, consider the U and L distributions defined in (4.10) or (4.11) and define
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the following recursive functions:

ct(St) = 1
R
EU

[
ct+1

(
St(1 + δ)zt+1

) ∣∣ St]�
ct(St) = 1

R
EL

[
ct+1

(
St(1 + δ)zt+1

) ∣∣ St]�
(8.1)cT (ST ) = cT (ST ) = (

ST−1zT (1 + δ) − K
)+

�

In (8.1), the P, U and L distributions of the successive price ratios zt+1 ≡
St+1/St are allowed to depend on the current index value St , provided such
dependence preserves the convexity of the option value ct(St) at any time t
with respect to St .

Assume that zt+1 takes I ordered values zt+1�i, i = 1� � � � � I that determine
the states at time t + 1, set ct+1�i ≡ ct(St(1 + δ)zt+1�i) and define at time t the
variables mt+1 : mt+1�i ≡ V i

y (t + 1)/Vx(t), i = 1� � � � � I. We can then show
by induction that the expressions (8.1) define upper and lower bounds on the
option value ct(St) at any time t < T .9 We clearly have10

(8.2)

ct(St) =
i=I∑
i=1

pt+1�imt+1�ict+1�i = EP
[
mt+1ct

(
St(1 + δ)zt+1

) ∣∣ St]�

With these definitions consider now the program

min(or�max){mt+1�i}ct =
I∑

i=1

ct+1�ipt+1�imt+1�i�

subject to: 1 =
I∑

i=1

(1 + δ)zt+1�ipt+1�imt+1�i�

1 = R

I∑
i=1

pt+1�jmt+1�i�

(8.3)mt+1�1 � mt+1�2 � · · · � mt+1�I > 0�

Given the assumed convexity of ct+1 = ct(St(1 + δ)zt+1), the solution of (8.3)
produces upper and lower bounds on ct(St) that are discounted expectations
of ct(St(1 + δ)zt+1) under the U and L distributions given by (4.10) or (4.11),

9 The multiperiod upper bound in (8.1) was initially developed in Perrakis (1986). The lower bound was
derived in Ritchken and Kuo (1988).
10 In (8.2) the expectations are conditional on the stock price at time t. In fact the model is more
general and the P-distribution may be allowed to depend on other variables such as, for instance, the
current volatility of the stock price provided convexity is preserved and these other variables do not
affect independently the trader’s utility function.
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conditional on St . The bounds on ct are still given by the recursive expressions
in (8.1).

Oancea and Perrakis (2006) addressed the asymptotic behavior of the mul-
tiperiod bounds in (8.1) as the number of trading dates increases. They con-
sidered specific cases of convergence of the P distribution to a particular sto-
chastic process at the limit of continuous time. They showed that both the U
and L distributions defined in (4.11) converge to a single risk-neutral stochas-
tic process whenever the P distribution converges to a generalized diffusion,
possibly a two-dimensional one, that preserves convexity of the option with re-
spect to the underlying asset price.11 A necessary and sufficient condition for
the convergence of a discrete process to a diffusion is the Lindeberg condition,
which was used by Merton (1982) to develop criteria for the convergence of
binomial and, more generally, multinomial discrete time processes. This con-
dition is applicable to multidimensional diffusion processes.

With minor reformulation, Oancea and Perrakis (2006) extended the va-
lidity of the bounds to stochastic volatility and GARCH models of the stock
price. They also demonstrated that U and L converge to distinct limits when
the limit of the P distribution is a mixed jump-diffusion process. They applied
the stochastic dominance bounds to a discrete time process that converges to
a mixed jump-diffusion process, in which the logarithm of the jump size am-
plitude G converges to a distribution with support G ∈ [Gmin�Gmax], with
Gmin < 0 < Gmax. The fact that the two option bounds converge to two dif-
ferent values is not particularly surprising. Recall that the bounds derived in
earlier studies are also dependent either on the special assumption of fully di-
versifiable jump risk as in Merton (1976), or on the risk aversion parameter
of the power utility function of the representative investor, as in Bates (1991)
and Amin (1993). The option prices derived in these earlier studies are special
cases located within the continuous time limits of the stochastic dominance
bounds derived by (8.1).

9 Multiple periods with transaction costs and with convex payoffs

Constantinides and Perrakis (2002) recognized that it is possible to re-
cursively apply the single-period approach with transaction costs and derive
stochastic dominance bounds on option prices in a market with intermediate
trading over the life of the options. The task of computing these bounds is easy
compared to the full-fledged investigation of the feasibility of conditions (3.5)–
(3.10) for large T for two reasons. As with the no transaction costs case, the
derivation of the bounds takes advantage of the special structure of the payoff

11 The conditions for the preservation of convexity were first presented by Bergman et al. (1996). Con-
vexity is preserved in all one-dimensional diffusions and in most two-dimensional diffusions that have
been used in the option pricing literature.
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of a call or put option, specifically the convexity of the payoff as a function of
the stock price. Second, the set of assets is limited to three assets: the bond,
stock, and one option, the test option. Below, we state these bounds without
proof.

At any time t prior to expiration, the following is an upper bound on the
price of a call:

(9.1)c(St� t) = (1 + k)

(1 − k){(1 + δ)ẑ}T−t
E

[[
(1 + δ)ST − K

]+ ∣∣ St]�
where (1 + δ)ẑ is the expected return on the stock per unit time. Observe
that (9.1) is the same as the upper bound given in (4.13) for zmin = 0 times
the roundtrip transaction cost. The tighter upper bound given in (4.8), (4.11),
and (8.1) does not survive the introduction of transaction costs and is eventu-
ally dominated by (9.1).

A partition-independent lower bound for a call option can also be found,
but only if it is additionally assumed that there exists at least one trader for
whom the investment horizon coincides with the option expiration, T = T ′. In
such a case, transaction costs become irrelevant in the put-call parity and the
following is a lower bound12:

c(St� t) = (1 + δ)t−T St − K/RT−t

(9.2)+ E
[
(K − ST )

+ ∣∣ St]/{
(1 + δ)ẑ

}T−t
�

where R is one plus the risk free interest rate per unit time.
Put option upper and lower bounds also exist that are independent of the

frequency of trading. They are given as follows:

(9.3)
p(St� t) = K

RT−t
+ 1 − k

1 + k

(
(1 + δ)ẑ

)t−T [
E

[[K − ST ]+] − K | St
]
�

and

(9.4)p(St� t)

⎧⎨
⎩

(
(1 + δ)ẑ

)t−T 1 − k

1 + k
E

[[K − ST ]+ ∣∣ St]� t � T − 1�

[K − ST ]+� t = T�

The bounds presented in (9.1)–(9.4) may not be the tightest possible bounds
for any given frequency of trading. Nonetheless, they have the property that
they do not depend on the frequency of trading over the life of the option. For
a comprehensive discussion and derivation of these and other possibly tighter
bounds that are specific to the allowed frequency of trading, see Constantinides
and Perrakis (2002). See also Constantinides and Perrakis (2007) for exten-
sions to American-style options and futures options.

12 In the special case of zero transaction costs, the assumption T = T ′ is redundant because the put-call
parity holds.
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10 Empirical results

A robust prediction of the BSM option pricing model is that the volatility
implied by market prices of options is constant across strike prices. Rubinstein
(1994) tested this prediction on the S&P 500 index options (SPX), traded on
the Chicago Board Options Exchange, an exchange that comes close to the
dynamically complete and perfect market assumptions underlying the BSM
model. From the start of the exchange-based trading in April 1986 until
the October 1987 stock market crash, the implied volatility is a moderately
downward-sloping function of the strike price, a pattern referred to as the
“volatility smile”, also observed in international markets and to a lesser extent
on individual-stock options. Following the crash, the volatility smile is typically
more pronounced.13

An equivalent statement of the above prediction of the BSM model, that the
volatility implied by market prices of options is constant across strike prices, is
that the risk-neutral stock price distribution is lognormal. Aït-Sahalia and Lo
(1998), Jackwerth and Rubinstein (1996), and Jackwerth (2000) estimated the
risk-neutral stock price distribution from the cross section of option prices.14

Jackwerth and Rubinstein (1996) confirmed that, prior to the October 1987
crash, the risk-neutral stock price distribution is close to lognormal, consistent
with a moderate implied volatility smile. Thereafter, the distribution is system-
atically skewed to the left, consistent with a more pronounced smile.

Several no-arbitrage models have been proposed and tested that general-
ize the BSM model. These models explore the effects of generalized stock
price processes including stock price jumps and stochastic volatility and typ-
ically generate a volatility smile. The textbooks by Hull (2006) and McDonald
(2005) provide excellent discussions of these models.

Economic theory imposes restrictions on equilibrium models beyond merely
ruling out arbitrage. As we have demonstrated in Section 3, if prices are set by
a utility-maximizing trader in a frictionless market, the pricing kernel must be
a monotonically decreasing function of the market index price. To see this, the
pricing kernel equals the representative agent’s intertemporal marginal rate
of substitution over each trading period. If the representative agent has state
independent (derived) utility of wealth, then the concavity of the utility func-
tion implies that the pricing kernel is a decreasing function of wealth. Under
the two maintained hypotheses that the marginal investor’s (derived) utility
of wealth is state independent and wealth is monotone increasing in the mar-
ket index level, the pricing kernel is a decreasing function of the market index
level.

13 Brown and Jackwerth (2004), Jackwerth (2004), Shefrin (2005), and Whaley (2003) review the liter-
ature and potential explanations.
14 Jackwerth (2004) reviews the parametric and non-parametric methods for estimating the risk-neutral
distribution.
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In a frictionless representative-agent economy, Aït-Sahalia and Lo (2000),
Jackwerth (2000), and Rosenberg and Engle (2002) estimated the pricing ker-
nel implied by the observed cross section of prices of S&P 500 index options
as a function of wealth, where wealth is proxied by the S&P 500 index level.
Jackwerth (2000) reported that the pricing kernel is everywhere decreasing
during the pre-crash period 1986–1987 but widespread violations occur over
the post-crash period 1987–1995. Aït-Sahalia and Lo (2000) reported viola-
tions in 1993 and Rosenberg and Engle (2002) reported violations over the
period 1991–1995.15 On the other hand, Bliss and Panigirtzoglou (2004) esti-
mated plausible values for the risk aversion coefficient of the representative
agent, albeit under the assumption of power utility, thus restricting the shape
of the pricing kernel to be monotone decreasing in wealth.

Several theories have been suggested to explain the inconsistencies with the
BSM model and the violations of monotonicity of the pricing kernel. Bollen
and Whaley (2004) suggested that buying pressure drives the volatility smile
while Han (2004) and Shefrin (2005) provided behavioral explanations based
on sentiment. However, most of the discussion has focused on the risk premia
associated with stock market crashes and state dependence of the pricing kernel.

Bates (2001) introduced heterogeneous agents with utility functions that
explicitly depend on the number of stock market crashes, over and above
their dependence on the agent’s terminal wealth. The calibrated economy
exhibits the inconsistencies with the BSM model but fails to generate the non-
monotonicity of the pricing kernel. Brown and Jackwerth (2004) suggested that
the reported violations of the monotonicity of the pricing kernel may be an ar-
tifact of the maintained hypothesis that the pricing kernel is state independent
but concluded that volatility cannot be the sole omitted state variable in the
pricing kernel.

Pan (2002), Garcia et al. (2003), and Santa-Clara and Yan (2004), among
others, obtained plausible parameter estimates in models in which the pricing
kernel is state dependent, using panel data on S&P 500 options. Others cali-
brated equilibrium models that generate a volatility smile pattern observed in
option prices. Liu et al. (2005) investigated rare-event premia driven by uncer-
tainty aversion in the context of a calibrated equilibrium model and demon-
strated that the model generates a volatility smile pattern observed in option
prices. Benzoni et al. (2005) extended the above approach to show that uncer-
tainty aversion is not a necessary ingredient of the model. More significantly,
they demonstrated that the model can generate the stark regime shift that oc-
curred at the time of the 1987 crash. While not all of the above papers deal
explicitly with the monotonicity of the pricing kernel, they do address the prob-
lem of reconciling the option prices with the historical index record.

15 Rosenberg and Engle (2002) found violations when they used an orthogonal polynomial pricing ker-
nel but not when they used a power pricing kernel.
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These results are encouraging but stop short of demonstrating absence of
stochastic dominance violations on a month-by-month basis in the cross section
of S&P 500 options. This inquiry is the focus in Constantinides et al. (2007),
hereafter CJP. CJP empirically investigated whether the observed cross sec-
tions of S&P 500 index option prices are consistent with various economic
models that explicitly allow for a dynamically incomplete market and also
recognize trading costs and bid–ask spreads. In the first part of their paper,
CJP introduced transaction costs (trading fees and bid–ask spreads) in trad-
ing the index and options and investigated the extent to which violations of
stochastic dominance, gross of transaction costs, are explained by transactions
costs. They found that transaction costs decrease the frequency of violations
but violations persist in several months both before and after the October 1987
crash.

Then CJP explored the second maintained hypothesis that every economic
agent’s wealth on the expiration date of the options is monotone increasing in
the S&P 500 index price on that date. This assumption is unwarranted once we
recognize that trading occurs over the (one-month) life of the options. With
intermediate trading, a trader’s wealth on the expiration date of the options is
generally a function not only of the price of the market index on that date but
also of the entire path of the index level. Thus the pricing kernel is a function
not only of the index level but also of the entire path of the index level. CJP ex-
plored the month-by-month violations of stochastic dominance while allowing
the pricing kernel to depend on the path of the index level.

In estimating the real distribution of the S&P 500 index returns, CJP re-
frained from adopting a particular parametric form of the distribution and
proceeded in four different ways. In the first approach, they estimated the
unconditional distribution as the histograms extracted from two different his-
torical index data samples covering the periods 1928–1986 and 1972–1986.
In the second approach, they estimated the unconditional distribution as the
histograms extracted from two different forward-looking samples, one that in-
cludes the October 1987 crash (1987–2002) and one that excludes it (1988–
2002). In the third approach, CJP modeled the variance of the index return as
a GARCH (1, 1) process and estimated the conditional variance over the pe-
riod 1972–2002 by the semiparametric method of Engle and Gonzalez-Rivera
(1991) that does not impose the restriction that conditional returns are nor-
mally distributed. In the fourth approach, CJP used the VIX-implied volatility
as an estimate of the conditional variance.

Based on the index return distributions extracted in the above four ap-
proaches, CJP tested the compliance of option prices with the predictions of
models that sequentially introduce market incompleteness, transactions costs,
and intermediate trading over the life of the options.

CJP’s empirical design allows for at least three implications associated with
state dependence. First, each month they searched for a pricing kernel to price
the cross section of one-month options without imposing restrictions on the
time series properties of the pricing kernel month by month. Thus they allowed
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the pricing kernel to be state dependent. Second, in the second part of their
investigation, CJP allowed for intermediate trading; a trader’s wealth on the
expiration date of the options is generally a function not only of the price of
the market index on that date but also of the entire path of the index level
thereby rendering the pricing kernel state dependent. Third, CJP allowed the
variance of the index return to be state dependent and employed the estimated
conditional variance.

A novel finding is that, even though pre-crash option prices follow the BSM
model reasonably well, it does not follow that these options are correctly
priced. Pre-crash option prices are incorrectly priced, if index return expec-
tations are formed based on the historical experience. Furthermore, some of
these prices lie below the theoretical bounds, contrary to received wisdom that
historical volatility generally underprices options in the BSM model.

Another novel finding dispels the common misconception that the observed
smile is too steep after the crash. Most of the violations post-crash are due to
the option smile not being steep enough relative to expectations on the index
price formed post-crash. Even though the BSM model assumes that there is
no smile, an investor who properly understood the post-crash distribution of
index returns should have priced the options with a steeper smile than the
smile reflected in the actual option prices.

In all cases, there is a higher percentage of months with stochastic dom-
inance violations by out-of-the-money calls (or, equivalently, in-the-money
puts) than by in-the-money calls, suggesting that the mispricing is caused by
the right-hand tail of the index return distribution and not by the left-hand tail.
This observation is novel and contradicts the common inference drawn from
the observed implied volatility smile that the problem lies with the left-hand
tail of the index return distribution.

Finally, CJP found that the effect of allowing for one intermediate trading
date over the life of the one-month options is to uniformly decrease the num-
ber of feasible months in each subperiod. They concluded that intermediate
trading strengthens the single-period evidence of systematic stochastic domi-
nance violations.

Constantinides et al. (2007) extended the results in CJP to American options
on S&P 500 index futures. They demonstrated corresponding violations and
implemented trading strategies that exploit the violations.

11 Concluding remarks

We presented an integrated approach to the pricing of options that allows
for incomplete and imperfect markets. The BSM option pricing model is the
nested case of complete and perfect markets. When the market is incomplete,
imperfect, or both, the principle of no-arbitrage by itself implies restrictions on
the prices of options that are too weak to be useful to either price options or
confront the data with a testable hypothesis.
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Instead of the principle of the absence of arbitrage that underlies the BSM
model, we introduced the economic restriction that at least one risk-averse
trader is a marginal investor in the options and the underlying security. Given
the cross section of the prices of options and the real probability distribution of
the return of the underlying security, the implied restrictions may be tested by
merely solving a linear program. We also showed that the economic restrictions
may be expressed in the form of upper and lower bounds on the price of an
option, given the prices of the stock and the other outstanding options.

By providing an integrated approach to the pricing of options that allows for
incomplete and imperfect markets, we provided testable restrictions on option
prices that include the BSM model as a special case. We reviewed the empiri-
cal evidence on the prices of S&P 500 index options. The economic restrictions
are violated surprisingly often, suggesting that the mispricing of these options
cannot be entirely attributed to the fact that the BSM model does not allow for
market incompleteness and realistic transaction costs. These are indeed excit-
ing developments and are bound to stimulate further theoretical and empirical
work to address the month-by-month pattern of option price violations.
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